Case #6
Dina R. Mody, MD

71 year old male
FNA biopsy of a right pelvic bony lesion
Case 6 What is your diagnosis?
Case 6 Answer

Mixed Adenocarcinoma (with Papillary Villoglandular Features) and Small Cell Carcinoma of the cervix

Small Cell Undifferentiated Carcinoma of the Cervix

- Uncommon malignancy of cervix
- Age range 25-40
- Coexist with adenocarcinoma (more frequently) or Squamous cell ca or SIL
- Type 18 or 16 in almost all cases
- Falls in the family of Neuroendocrine carcinoma of the cervix (Carcinoid, atyp carcinoid, small cell ca, large cell NE ca)
Small Cell Undifferentiated Carcinoma of the Cervix

- Cytologic diagnosis difficult and dd includes HSIL and lymphoma
- Moulding may be difficult to see on liquid based
- Chromogranin, synaptophysin, CD56, NSE +, Keratin -, LCA-
- Propensity for lymphovascular invasion and poor prognosis

Differential Diagnosis of Small Cell Undifferentiated Carcinoma of the Cervix

<table>
<thead>
<tr>
<th>Diagnosis</th>
<th>Immunohistochem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sm cell ca</td>
<td>Chr, Syn+, P63-</td>
</tr>
<tr>
<td>Sq cell ca</td>
<td>P63++, chr, syn –</td>
</tr>
<tr>
<td>Basaloid ca</td>
<td>same as above</td>
</tr>
<tr>
<td>PNET</td>
<td>O13/Cd99</td>
</tr>
<tr>
<td>Lymphoma</td>
<td>LCA, B&T markers</td>
</tr>
<tr>
<td>Melanoma</td>
<td>S100, HMB45, MelanA+</td>
</tr>
</tbody>
</table>

Differential Diagnostic Considerations

- Endometrial cells
- Follicular Cervicitis
- Deep atrophy
- High Grade SIL
- Squamous cell carcinoma
- Adenocarcinoma
- Small cell Carcinoma
- Others…
Small Cell Ca of Cx: P16 and HPV Types

In a series of 9 cases, 100% P16+
- P53 neg 7/9
- HPV 16 4/9
- HPV18 1/9
- HPV68 1/9
- HPV 3 1/9
- HPV neg 1/9

Horn LC, Linder K et al. Int J of Gynecol Pathol. 25(2) 182-186, 2006
Small Cell Ca of Cx: HPV mRNA (in a series of 20 cases)

<table>
<thead>
<tr>
<th>Neuroend mks</th>
<th>HPV Type</th>
<th></th>
<th>16</th>
<th>18</th>
<th>neg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neg</td>
<td></td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>NSE</td>
<td></td>
<td>5</td>
<td>0</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>NSE+Ch</td>
<td></td>
<td>8</td>
<td>1</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>NSE+Ch+Syn</td>
<td></td>
<td>5</td>
<td>0</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>20</td>
<td>3</td>
<td>14</td>
<td>3</td>
</tr>
</tbody>
</table>

High Risk HPV and Cervical Adenocarcinomas

<table>
<thead>
<tr>
<th>Author</th>
<th>Positive</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Andersson</td>
<td>71%</td>
<td>PCR L1&E6</td>
</tr>
<tr>
<td>Casellsague</td>
<td>87.4%</td>
<td>PCR G5+/6+</td>
</tr>
</tbody>
</table>

Casellsague et al. JNCI 2006; 303-315

High Risk HPV Positive Cervical Adenocarcinomas and Age

HPV Vaccines (Prophylactic)

- Gardasil (HPV 16, 18, 6, 11) (Merck)
- Cervarix (HPV 16, 18 not FDA approved yet in the US) (Glaxo SK)
- Manufacturers plan to extend current Virus-like particle vaccines to approx 6 carcinogenic types that collectively cause >90% of cervical Ca worldwide. Timeline not known.

What Does a Drop In prevalence of Disease Do to the Screening Program?

Predictions for the Future of Cervical Cancer Screening

- Since the other carcinogenic types (non 16/18) are less threatening, cost effectiveness analyses support raising the age of first cervical screening to approx 24 yrs
- If durability is truly long term (may need boosters), then stretch out screening intervals
Predictions for the Future of Cervical Cancer Screening (Generation)

• Best fit for the future would be a combination of a molecular test such as type specific HPV-DNA and computer assisted cytology
• 3-5 yr intervals
• If all goes as planned and in the perfectly implemented scenario, Pap volumes would drop by 50%. But.........

HPV Vaccination

• Timelines and strategies
• Payment
• Acceptance
• How long before we will see results
• Cross protection
• Duration of protection
Selected References

Small Cell Carcinoma of Cervix

Glandular references

General References

AGUS/AGC
Mody DR. Agonizing over AGUS, Cancer. 1999;87(5):243-244.

Glandulars and HPV typing

ThinPrep and Glandulars

SurePath

Other References

Endometrial carcinoma detected with SurePath liquid-based cervical cytology: comparison with conventional cytology.

Normal endometrial cells in cervical cytology: systematic review of prevalence and relation to significant endometrial pathology.
Canfell K, Kang YJ, Clements M, Moa AM, Beral V.
Related Articles

Lee CY, Ng WK.
Acta Cytol. 2008 Mar-Apr;52(2):159-68.

Superior performance of liquid-based versus conventional cytology in a population-based cervical cancer screening program.
Beerman H, van Dorst EB, Kuenen-Boumeester V, Hogendoorn PC.
Gynecol Oncol. 2009 Jan 15. [Epub ahead of print]

Normal endometrial cells in liquid-based cervical cytology specimens in women aged 40 or older.
Moroney JW, Zahn CM, Heaton RB, Crothers B, Kendall BS, Elkas JC.

ThinPrep detection of cervical and endometrial adenocarcinoma: a retrospective cohort study.
Schorge JO, Hossein Saboorian M, Hynan L, Ashfaq R.

Dysplasia associated with atypical glandular cells on cervical cytology.
Sharpless KE, Schnatz PF, Mandavilli S, Greene JF, Sorosky JI.

Endometrial Polyps References

Clinical utility of liquid-based cytology for the characterization and management of endometrial polyps in postmenopausal age.
Detection of benign intracavitary lesions in postmenopausal women with abnormal uterine bleeding: a prospective comparative study on outpatient hysteroscopy and blind biopsy.
Angioni S, Loddo A, Milano F, Piras B, Minerba L, Melis GB.

Liquid-based endometrial cytology: its possible value in postmenopausal asymptomatic women.

Endometrial polyps in pre- and postmenopausal women: factors associated with malignancy.
Antunes A Jr, Costa-Paiva L, Arthuso M, Costa JV, Pinto-Neto AM.

How often are endometrial polyps malignant?
Shushan A, Revel A, Rojansky N.

[Hysteroscopic evaluation of the uterine cavity in postmenopausal women with uterine bleeding]
Wierzbowski T, Gottwald L, Bierkiewicz A, Suzin J.

Diagnostic value of hysteroscopy and hysterosonography in endometrial abnormalities in asymptomatic postmenopausal women.
Gumus II, Keskin EA, Kılıç E, Aker A, Kafali H, Turhan NO.

Histopathologic features and risk factors for benignity, hyperplasia, and cancer in endometrial polyps.
Savelli L, De Iaco P, Santini D, Rosati F, Ghi T, Pignotti E, Bovicelli L.

Postmenopausal bleeding: a diagnostic approach for both private and public sectors.
Spicer JM, Siebert I, Kruger TF.

Comparison of ultrasonography, hysteroscopy, and biopsy in the diagnosis of endometrial lesions in postmenopausal tamoxifen-treated patients.

Role of hysteroscopy with endometrial biopsy to rule out endometrial cancer in postmenopausal women with abnormal uterine bleeding.

Transvaginal ultrasonography and endometrial cytology as a diagnostic schema for endometrial cancer.
Minagawa Y, Sato S, Ito M, Onohara Y, Nakamoto S, Kigawa J.

The malignant potential of endometrial polyps.

The significance of intrauterine lesions detected by ultrasound in asymptomatic postmenopausal patients.
Lev-Sagie A, Hamani Y, Imbar T, Hurwitz A, Lavy Y.

The role of outpatient diagnostic hysteroscopy in identifying anatomic pathology and histopathology in the endometrial cavity.
Lo KW, Yuen PM.

Transvaginal ultrasound and diagnostic hysteroscopy as a predictor of endometrial polyps: risk factors for premalignancy and malignancy.

Uterine pathologies in patients undergoing tamoxifen therapy for breast cancer: ultrasonographic, hysteroscopic and histological findings.
Le Donne M, Lentini M, De Meo L, Benedetto V, Mesiti M.

Hysteroscopic evaluation of endometrial polyps.
Fernández-Parra J, Rodríguez Oliver A, López Criado S, Parrilla Fernández F, Montoya Ventoso F.